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Dynamics of voltage-driven Josephson junction arrays 

SungJong Lee and Thomas C Halsey 
The J a m s  Franck Institute and Department of Physicp, The Univemily of Chicago. 5640 
South Elli Avenue, chirago, U 60637, USA 

Received 25 November 1591 

AbshcL W W s  the dynamics of voltagedmm Josephson junction arrays with 
negligible capaatances The array dynamics shows a sensitive dependenlr m initial 
phases leading to current4pike structums in the lime-averaged I-V relations, W 
demonstrate this eEect explicitly for the simple V t e m  of a twojunction ehain, which we 
also use to illustrate the main features of current mspnse to external driving voltages. 
We then show that a class of amplified mum solutions of twodimensional voltage- 
driven Josephson junction “ays under a perpendicular magnetic field can be reduced 
to two-junction dynamics. In both case$ we find that coherent pbase-slip pmceses can 
lead to subharmonic lwkings with an &-I RP field. 

1. Introduction 

The dynamics of single Josephson junctions driven by .a currents has provided one 
of the great, laboratories for non-linear dynamics in solid state systems [l-31. Such 
dynamical phenomena as period doubling, the quasi-periodic transition to chaos, and 
hysteresis have been extensively studied with this system. But Josephson junctions 
can also be used to create spatially extended dynamical systems. ’Wodimensional 
Josephson junction arrays containing up to - lo6 individual junctions have been 
used for many years to study statistical mechanics problems [MI. More recently, 
experimentalists have turned to the remarkable dynamical properties of these arrays 
[7-91. 

The principal result of these studies has been the observation of giant Shapiro 
steps and fractional giant Shapiro steps in I-V relations of Josephson junction arrays 
[SI. These giant Shapiro steps and fractional giant Shapiro steps represent a coherent 
phase-locking of all junctions in an N x N array at time-averaged voltages satisfying 
the relation, 

with an external magnetic field inducing f (= p / q ;  p ,  q relatively prime) supercon- 
ducting flux quanta per unit plaquette and with w equal to the RF frequency of the 
driving current. The cases with n / q  E 2 represent integer giant Shapiro steps and 
those with n/q @ Z represent fractional giant Shapiro steps. 

When capacitances are neglected, the current through junction ij in the array k 
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where B i ,  B j  are the superconducting phases of islands i and j respectively and A 
S the vector potential. Rij denotes the normal state resistance of the junction, and 

its critical current Equation (1.2) combined with Kirchhoff’s laws completely 
determines the dynamics of the array. 

Numerical simulations based on this coupled RSJ model have reproduced the 
previously mentioned step structures [lo]. However, analytic approaches to the phase 
dynamics of the arrays, especially in the experimentally relevant currentdriven regime, 
have been scarce. Voltagedriven arrays under magnetic fields were analysed by Halsey 
using a special m a &  for the ground state configuration, that of ’staircase states’ (see 
section 3) 111, 121. By using an adiabaticity assumption, not only fractional giant 
Shapim steps but also additional subharmonic giant Shapiro steps were predicted 
with estimates of stepwidths in some limiting situations. These subharmonic giant 
Shapiro steps would occur at voltages satisfyiig 
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n,m E 2. n Nhw 
m 2eq 

vn,m = -- 

These predictions have not fared particularly well by comparison with experimen- 
tal results. In particular, subharmonic steps have been elusive experimentally, and it 
is possible that their appearance is related to self-field effects not included in the RSJ 
model of equation (1.2) [13]. The theory makes specific predictions only for currenls 
oriented along a diagonal axis of a square lattice; experimental studies in this geom- 
ehy have not only seen no subharmonic steps, but no fractional steps either [14, 14. 
It is thus profitable to re-examine in detail the specitic assumptions of Halsey’s work, 
in order to explore possible sources of the disagreement with experiment. 

Halsey’s approach is based on two physical assumptions. The fust is that a voltage- 
driven array (far more convenient theoretically) can be substituted for the current- 
driven experimental situation. The second assumption is that, since the coupled 
RSJ equations generate a dissipative dynamical system, in the limit where the array 
dynamics is arbitrarily fast compared with changes in boundary conditions, the state 
can be modelled as an adiabatically changing metastable state. As discussed in [Ill, 
this implies the existence of rapid phase-slip processes when the adiabatically changing 
metastable state enters an unstable region of phase space. 

In this study we shall explore the validity of these assumptions by studying some 
examples of voltagedriven systems in which the dynamics can be partially or com- 
pletely solved. Our principal result is that the dynamics of voltage-driven arrays is 
considerably more subtle than the dynamics of currentdriven arrays, even in the 
limiting case of a two-junction-in-series array. The dynamics of voltage-driven arrays 
is far more dependent on initial conditions, which can alter the current even well 
away from any rational voltage step. Nevertheless, dependence of the current on 
the phase of the external driving voltage appears only for subharmonic or harmonic 
voltages satisfying equation (1.3). In numerical simulations of the voltage-driven case, 
current-spike structures appear that do seem to have at least a qualitative relationship 
to the current-driven Shapiro step.  

This can be understood by reviewing the case of the single junction. A single 
currentdriven junction obeying equation (1.2) under a sinusoidal RF field has a well 
defined voltage at evely value of the current. The Shapiro steps appear only for 
harmonic voltages, 

hw 
2e 

V, = -n. 
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If the junction is voltagedriven, for voltages not satisfying equation (1.4), there is no 
net current flow in the supercurrent channel, Le. (sin O i j )  = 0, where the averaging 6 
over time. However, as originally realized by Josephson [lq, the situation is daferent 
for voltages satisfying equation (1.4). In these cases, (sin O i j )  # 0 necessarily, rather 
the Current in the supercurrent channel is determined by the phase shift between the 
RF driving field and the Josephson oscillations of the junction. 

This suggests that if we wish to generalize voltagedriven results m the Current- 
driven situation, one possible procedure is to look for values of the wltage where 
variable currents are possible, depending upon the phase relationships of the system. 
For systems of more than one junction, however, this is an ambiguous procedure. 
Not only is there an intrinsic phase of the external driving voltage, there are also 
intrinsic phases of the initial state of the junction network or array. As we. shall see. 
later, these intrinsic phases can alter the average current, even at voltages completely 
unrelated to the RF driving frequency. 

In thii case, it is natural to hypothesize that it is dependence on the phase of the 
driving field that will translate into a phase-locking in the currentdriven situation. We 
shall find later that this implies both harmonic and subharmonic lockkgs in even a 
two-junction network, provided that phase-slip processes can relax sufficiently quic!dy. 

The relaxation time of the phaseslip processes scales as (2/%)llZ (% is the 
average DC voltage per junction) which becomes much less than the Josephson oscil- 
lation time (= 1/6) in the limit where is small. Even outside tbis adiabatic limit, 
there is still a dependence of the current on the RF driving phase; however, the size 
of the predicted step structures decreases as one leaves the adiabatic regime. This 
suggests that the non-appearance of subharmonic lockings in experiment is due either 
to a quantitative problem, Le. the distance of the experimental situation from the adi- 
abatic limit, or to some, as yet poorly understood, suppression of the subharmonic 
lockings due to the current driving. 

This paper contains four sections and an appendix In section 2 we analyse the 
voltagedriven two-junction system with equal resistances and critical currents. 'Ibis 
system admits a closed-form solution involving integrals of transcendental functions, 
allowing analysis of some of its dynamical features. In section 3 staircaseas& 
dynamics is used to investigate phase-slip processes in a two-dimensional array in a 
magnetic field. In section 4 we discuss the relation of these results both to Halsey's 
original conclusions and to the experimentally relevant current-driven situation. In the 
appendix we discuss useful approximations to expressions for the current appearing 
earlier in the paper. 

Figure 1. A system of hvo Josephson junctions in series. ?be phases $0 and 42 m the 
boundary' regions are imagined to be fixed. me phase on the centre island is 61. 
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2. Wtage-drivea two-junction system 

The simplest non-trivial voltagedriven Josephson junction system consists of two 
junctions coupled in series, with the bounday phases +o and +z given functions of 
time (see figure 1). Using current conservation through the island in the middle, and 
assuming homogeneity of I ,  and R, we get 

We choose 4o = 0;  the voltage is given in terms of +z(i) by fi4,/2e = ~ ( i ) .  We 
are here making the unrealistic assumption that the source impedance R,, = 0. 

We use reduced units of time and current respectively: Z = 2eIcRt/h, i(F) = 
Z(q/&, and u(F) = V(F)/IcR. Later, we will introduce the scaled RF frequency 3, 
which will be related to the physical frequency w by 3 = h / 2 e I c R .  Equation (2.1) 
now simplies to 

4l +sin(+,) = u(f) - 4, + sin(+z - ( 2 4  

where the dot now refers to a derivative with respect to the scaled time Z. Now define 
y (& - 24,)/2. The case y = 0 corresponds to equal phase differences across 
each of the two junctions. After some rearrangements, we obtain 

$ = - c o s  - sin(y). (3 
'Ibis can be integrated to give 

Tbus by choosing So = 0 and the branch --II < y < ?F, we have 

with 

CO = tan (F) 

(2.3) 

(2.4) 

yo = y ( t =  0). 

From this result and the relation y = (& - 2+,)/2, we can obtain an expression for 
$1- 

The current as a function of time is 

(2.7) 
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By using b-igonometric identities and the previous expression for y(f) in equa- 
tion (25) we arrive at the following expression. 

1 - ciexp[-2G(f)] 
1 + 4exp[-2G(g]  

where 

and co is defined abore. 

equations (2.5) and (26), which can be put in the form, 
Ilb begin with, let us first consider some general features of y(E) and i(9. From 

tan (!) = t a n  (9) exp[-G(t)] (2.9) 

we see that if yo = 0, then y(f) = 0 for all t. Furthermore, since exp[-G(Q] > 0, 
tan(y/2) (and hence y. too) does not change its sign. In other words, if its initial 
value is > 0 (< 0) then it remains > 0 (< 0) for all later times. This holds for all 
possible forms of v(t). 

Until now, our arguments did not depend on the time dependence of the driving 
voltage. Now we restrict our attention m the case of DC plus AC voltage driving with 
frequency 3, 

v(f) = 2[v,+ v , s i n ( ~ t ) ] .  (Z10) 

Then G(t) becomes 

m i 
= Re[exp(iPo) i"J, (-2) /d exp[i(vo - m6)fJdfj. (211) 

m=-m 

Note that Po fixes the phase relation between the RF driving and the Josephson 
oscillations. If vo # mi3 then 

(212) 

This Is a superposition of oscillating functions with frequencies, 

um = vo - mi3 m E 2. (213) 

G(f) will be bounded between G,,, and Gmi,, as it is a sum of oscillating terms. 
Therefore tau(y/2) and y also oscillate between two finite values. On the other 
band, if vo = m3 for some integer m, then in equation (211) for G(t), one 
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term (the mth term) is replaced by a linear term in I with a positive or a negative 
mefficient depending on m, p,,, G, U,, and ul. As f gets larger, this linear term 
will dominate G(Q. Therefore, if G(Q is linearly increasing, then y goes to f?r as 
f + CO, and if G(i)  h linearly decreasing, then y goes to zero as f 3 CO. 

Let us mnsider the behaviour of i (Q,  especially the frequency spectrum of i (Q 
and time-averaged currents. We begin with the case when yo = 0 = co, i.e. when 

S-J Lee and T C Hakey 

$2 - $1 = 41 - 4 0 .  (214) 

This mrresponds to the case where the initial phase differences of the hvo junctions 
are equal to each other and later developments of the phase differences of each 
junction are also equal to each other, giving the same dynamics as that of a single 
junction voltagedriven system. This dynamics is closer to the currentdriven dynamics 
than is the case for other values of y,. For this case, from equation (U), 

This is a superposition of AC currents with frequencies 

U, = v,, - mE (2.16) 

where m is an integer, with an additional DC current in the normal current channel. 
Only when U,, = mG does the time-averaged current have a finite range of different 
values depending on Po. ms situation is the same as for a single junction under 
voltage driving.) 

When e,, # 0, i (Q  has a much more complicated behaviour due to the term 
exp[-2G(Q]. Using the results for G(Q in previous pages, we can put 

where 

If we examine equation (28) for the current i(q, we see that the supercurrent 

(i) The term sin(&(Q). This term will contain frequency modes vl = vo-mlG, 

(ii) The term involving G(Q. From equations (2.17) and (2.18), we see that this 

Hence the frequency modes for i (Q  are given by all possible combinations of the 

channel involves two factors. 

where ml E Z. 

term will contain frequency modes vz = lz(uo - m,a), where I,, m, E Z. 

Josephson frequency and the driving frequency, 

Unlrnz = n1v0 - ~ z G  nt,n, E (2 19) 
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in contrast to the single junction case, in which the Josephson frequency is combined 
only with harmonics of the driving frequency. 

In general, the time-averaged Dc current due to the supercurrent Channel is non- 
vanishing; for both subharmonic and harmonic values of the driving voltage, its value 
depends upon the initial phase Po. This can be seen by examining a typical term in 
the expansion of equation (2Sa) in a product of Bessel series. We shall see this for 
an explicit example in the appendix. Note, however, that D and F, become small in 
the limit of large U,,, which is the opposite of the adiabatic case discussed in [U]. In 
this limit, G ( 9  -+ 0, and equation (284 reduces to the single-junction form, albeit 
with changed parameters. Thus in this case there wid be no subharmonic locking% 

If U,, and a are irrationally related then we can see from the previous argument 
that the 8equency modes are a dense subset of the real numbers. The timeaveraged 
current (in this case due to the superconducting channel) is also in general non- 
vanishing, though a quantitative estimate of this current is rather difficult. It is, 
however, easy to see that although it depends upon the initial value of y, it does not 
depend upon the phase Po of the AC driving. Again, an explicit example of this is 
discussed in the appendix 

FiiaUy, from equations (2.9) and (2.11) we can estimate the time for y to change 
significantly from its initial value yo in a phase-slip pracms. Suppose &(t) = x at 
S = 0, and that it is increasing at this time. Then if u1 e: vo, we have approximately 

so that 

(221) G(t) % -vot -2 /Z 

for small times Thus the time SI at which y(t) will have changed from yo to y1 is 
determined by 

so that the phaseslip time Ts % a. This may be compared with an intrinsic 
relaxation time ;iR, which is equal to one in reduced units; ( T ~  = li/2eIcR in physical 
units). When T~ cc: 2/v,, the time scale for & to change, then we are in the adiabatic 
limit. 

In the appendix, we use an approximation to estimate the timeaveraged cur- 
rents. Numerically, we can evaluate the range of timeaveraged currents for various 
external driving voltages. This can be done by directly integrating the equations of 
motion, using a fixed time-varying external voltage V(1) .  We used a first-order time 
integration of the equation of motion (2.3) (which gives more information about the 
current than higher-order methods). For a given external voltage, maximum and 
minimum currents were obtained by varying the initial phase configuration (Po, yo). 
We generally took about WOO such initial points, and then took the maximum and 
minimum currents over this set of initial configurations. Figure 2 shows maximum 
and minimum currents in terms of the DC component of external voltage. We find a 
non-vanishing range of timeaveraged current not only for integer harmonic voltages 
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V,,, per junction, I$, = ntw/2e, but also for subharmonic voltages, as well as for 
voltages with no obvlous relation to the driving frequency. We see that, at low-order 
fractional voltages such as = $(&/2e) or i(hw/2e), there are indications of 
strong variation of the range of currents with moltage. It k not dear whether the 
current range against time-averaged voltage varies smoothly or not with voltage; it 
may be discontinuous at rational values of DC voltage. 

S-J Lee and T C Hahey 

I I f I 
0 0.5 1.0 1.5 2.0 2 5  

-1.01 I 

vo I= 
Q u m  2 The maximum and minimum time-avemged a” plotted against DC voltage 
in a WO-junction Syatem under voltagedriving mnditions. ?he broken line sh- the 
current in the normal channel; the full lines show the rdnge of possible avmge aments 
StNCPre is visible at both harmonic and arbharmonic voltags These rsults were 
obtained wing a 6rst.order integration scheme, with a time sep of 0.005 x %, and an 
integration time of 1000-2000 x b. The value ol VI was taken to be VI = 0.4, and 
ir was taken to te G =0 .5 .  

3. Dynamics of two-dimensional diagonal arrays 

The ground-state configurations of two-dimensional square Josephson junction arrays 
in a magnetic field are not, in general, known except for a few relatively simple values 
of flux per plaquette f = p / q .  For some of these values of f, the ground states are 
so-called staircase states, which are much simpler to deal with analytically due to a 
symmetry of the vortex and current configurations. We begin with a brief review of 
these states. 

In order to iind the goundstate configuration of a Josephson junction array in 
an external magnetic field with f = p / q ,  we have to minimize the Hamiltonian 

in terms of the phases { e i } .  Here, the sum k over nearest neighbours. Aij is the 
line integral of the vector potential, as in equation (1.2). 
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Figure 3 A q u a i  m y  showing the diagonal staircases along which h e  cumnt is 
mnstant (zigzag lines), as well as the a- and Xdirections. ?he sample is imagined to 
be 2 N  x 2 N ,  so that the number d junctions in a stairease is 2 N .  

This satisfies E,, Aij = 2 r  f with the sum in the counter-clockwise direction around 
a plaquette. 

= I,. The extremum condition for H 
is equivalent to the requirement that supercurrent be conserved at every site in the 
array. The supercurrent across the (ij) bond is l,sin(Oi-Oj - A i j ) .  Asimple way to 
satisfy current conservation in a square array is to require that the supercurrent along 
any individual diagonal 'staircase' of the array be constant (see figure 3). In this case 
all of the junctions along a staircase have the same gauge-invariant phase differences. 
Let us denote these phase differences for the mth staircase as $,,, G Oi - Oj - .A. .  v .  
Then we can find locally stable states with 

We deal with uniform arrays only with 

4m = *fm t a, - r [ f m  t a,/nI, 0.3) 
where [I]= int [z  + is the nearest integer function. Here, a, is determined by 
minimizing the global energy or, equivalently, by letting the net current he equal to 
zero. In this way, we get a,, = 0 for odd q, and a, = n / 2 q  for even q. See [12] for 
details. For general values of a,, we obtain staircase states with non-zero net current 
along the direction of the staircases. We will call this the adirection, the direction 
of current obtained by varying a. 

Let us assume that an Acplus Dcvoltage u ( f )  = 2N(uo+u1sin(L;rt)) is applied 
along the adirection of a diamond-shaped 2 N by 2 N array where 2 N refers to the 
number of junctions along longitudinal and transverse directions; we suppose that N 
is an integral multiple of q. Here, again as in the two-junction system in section 2, 
we use reduced units for notational convenience. Note, in particular, that frequency 
is measured in units of the intrinsic response frequency wR G l / r R  G 2elcR/h and 
time in units of T~ We can construct a simple solution for the dynamics of the array 
driven by this voltage by adding a timedependent function to equation (3.3). That is 

4" = r f m  + a, - r [ f m  + a,/r] n t a(r) 

a(t) = a, + v,t- +cos(af)  

0.4) 

with &(g = v, + u1 sin(L;ro. This can be integrated as 

(3.5) 
U 

w 
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where a,, is an integration constant. 
In this solution, the phase dynamics is such that superconducting currents and 

normal currents are separately consewed at each node. This is an analogue of the 
uniform phase dynamics (yo = 0 )  of the two-junction system in section 2, extended 
to two-dimensional arrays. The phase-slip ansalz of Halsey is based on the instability 
of this solution. When a( i) reaches a value such that, for some m, +,,, = f?r/2, the 
global energy of the system will be reduced by a phase-slip of r uniformly acrms the 
mth staircase, with a corresponding vortex motion across that staircase. Halsey Ill] 
assumed that such a phase-slip took place instantaneously, and proceeded to calculate 
properties of the Shapiro steps given such an assumption. 

However, within the framework of the staircase ansac? alone, equation (3.4) is the 
only solution for a(q; therefore, using only the staircase artsac?, phaseslip processes 
cannot be analysed in any detail. This is because, in order to see the instability, 
we must compare the energy of a staircase state with that of a neighbouring state 
generated through small distortions of phase configurations. These distortions lie 
outside of those states described by a( t) alone. 

We can generalize this a" to states with non-zero net current along the direc- 
tion perpendicular to the adirection by twisting the phases on successive diagonal 
planes by constant angles x,, m = 1,. . . , q such that the differences of phase shifts 
for neighbouring diagonal staircases are 

S-J Lee and T C Ha& 

Tm x m  - xm-1. 04 
The direction of current induced by this twist we call the Xdirection; it is perpen- 
dicular to the adirection. These states no longer have uniform current (or uniform 
gauge-invariant phase difference) along a staircase but rather, horizontal bonds and 
vertical bonds along a staircase have different, but still constant currents. We will 
call these generalized staircase states since vorticity along a staircase is constant. By 
giving a time dependence to both y,(i) and +,,,(t), we can represent a dynamic 
state that preserves the generalized staircase form. Using current conservation in the 
Xdirection, we obtain in reduced units 

-sin(+, t Y m )  +sin(+, -7,,,) -(4m++m)+(4m-+m) = - Sin(+,+l +Tmtl) 

+sin(+,+1-7m+l)-(4,+1 + + m t 1 ) + ( 4 n + l - + m t l )  0.9 

cos(+,)siny, t 7, = iX (Q 0.8) 

which can be simplified to 

m = 1 , .  . . ,q 

where +, E &(i) is as given by equation (3.4), and i, denotes the average current 
along the Xdirection. The current per  staircase in the adirection can be calculated 
using the following formula. 

(3.9) 

NQW we can analyse the dynamics of phase-slips. Since we have voltage driving 
along the adirection, we can put i,(i) = 0. Thus 

cos( +,,,) sin 7m + 7, = 0 m = 1,. . . ,q. 0.10) 
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The solution {ym = 0 )  is stable until one of the COS(&) becomes negative. Suppose 
the nth staircase is the first to reach that instability at time f = f,. However small 
yn(fo) may he, due to the instability of equation (3.10) for yn, yh will grow until 
yn = r, at which point it will regain stability. This is equivalent to q5,, changing by 
r. First we estimate the relaxation time or phase-jumping time using equation (3.10). 
We set f, = 0 as the time at which cos(&) becomes negative; without loss of 
generality we take $,, = ?r/2 at f, = 0. We can integrate equation (3.10) to obtain 

t a n  2 = tan 2 ("exp [ - L ' ~ o s ( + ~ ) d f ]  (3.1 1) 

with the initial condition & ( f =  0) = ~ 1 2 .  This recalls equation (2.9) for the two- 
junction system. Following the derivation of equation (221), and using equation (3.5) 
for the driviig voltage, we get 

C O S ( 4 , ( r ) )  % -u,i 

where we assumed the limit of small argument in the sine function and v1 << U,,. 
Now if we put Ts as the time for a phase-slip to occur, then from 

and equation (3.1 l), we get 

(3.13) 

(3.14) 

with y , ( ~ ~ )  -t T and y,(O) -, 0. In this formula, the logarithmic factor can be 
considered to be a number of order unity when realistic cutoff values are used for 
limiting phases 7h(~s),  and yA(0). Hence we see that Ts is mainly determined by 
its inverse square mot dependence on uo, as in the two-junction system; in fact, 
equation (3.14) is identical to equation (222) for the phase slip in the two-junction 
system. 

Let us suppose that an external DC plus AC voltage is applied at the frequency 
0. Then the typical DC voltage vo at which we might observe Shapiro step structures 
will be vo - 0 (or voltage per junction V, - h / 2 e  in physical units.) Thus the 
typical time scales due to both the external AC voltage and the Josephson oscillations 
are - I/G, while the relaxation time ss - @. Therefore, we see that the 
relaxation time can he made much smaller than other time scales if we deal with a 
small enough driving frequency (compared to wR) and hence with small time-averaged 
voltages. This is the adiabatic limit. 

Of course, this computation is not necessarily realistic as a description of the full 
dynamics of the array. If we enforce spatial periodicity of ym through ymp = y,, 
then phase-slips occur in the same direction in all parts of the array, which wll induce 
a Hall voltage in the direction transverse to the applied voltage, with its magnitude 
proportional to the transverse dimension of the amy. Many boundary conditions will 
exclude this possibility. 
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4. Discussion 

The relevance of these results to the more physical case of current-driven arrays 
k highly debatable. For the two-junction system, the phase-slips that lead to the 
subharmonic lockings are simply impossible if the system is currentdriven. Similarly, 
for the arrays, the phaseslips would lead to macroscopic Hall voltages across the 
entire sample. Only if the system can somehow adjust the dynamics @raking the 
staircase symmetry!) so as to evade these voltages will the phase-slips occur. 

In comparing these results with the general absence of subharmonic lockings in 
experimental studies of arrays, we are thus driven to one of hvo conclusions. The Erst 
possibility is that the current-driven arrays are able to phase slip as one approaches 
the adiabatic h i s  one would then conclude that present experiments are too far 
€” the adiabatic limit to see the subharmonic lockings. The second, and more 
interesting posribility, is that the phase-slips are suppressed by the current-driven 
dynamics in an array, just as they are in a two-junction system. Thi implies that the 
dissipative currentdriving mechanism successfully maintains the array in a state of 
higher internal energy than the array would otherwise seek. If true, thii would be a 
remarkable effect. 

S-1 Lee and T C Hakey 
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Appendix. Josephson mode approximation 

In this appendix we will derive an approximate formula for the be-averaged cur- 
rents for a given external voltage and initial phase configuration of a two-junction 
system. The amplitude of the zero frequency component of i(i) from equation (2.8a) 
corresponds to the time-averaged current for a given voltage and initial phase con- 
figuration. But it is vey difficult to estimate the be-averaged current from the full 
expression, because it involves a sum of infinite products. Thi is due to the fact 
that in section 2 we retained all of the sinusoidal terms in G(S). If we can approxi- 
mate C(i) by only one AC component, then currents may be estimated in a relatively 
straightfomrd manner. From the expression for G(t) for a given AC plus DC voltage 
driving, (we use the notation of section 2), 

m 

- 2G(t) = D + F,sin [ ( v o - m G ) f t  Po + y] 
m=-m 

where 
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we see that the m = 0 term is dominant when I w t / i j l  c(: 1 or in the adiabatic Limit 
where U, Q: 1. This assumed, we can approximate -2G(t) as 

-ZG(t)= D+F,sin(u,S+p,,) (4 
with 1) and Fo as given above. In a sense this can tx: called a simple Josephson 
mode approximation or small AC component approximation because of the condition 
qij < 1. If we substitute the expression for -ZG(f) into equation @Sa) for 
i(q, then we can obtain the time-averaged cumnt by taking the zero frequency 
component. 

are rationally related to one another, i.e. if ma = nv, for some 
integral m, n, then we can show that the current depends both upon go (through 
e,) and upon the phase-shift with the driving field, Po. Recall the expression for the 
average current, 

If v,, and 

1 - c;exp(-ZG) 
1 + cgexp(-2G) 

Here ( ) denotes a time average. In the second term, sin(q5,/2) can be expressed as 

which can be written as 

The second term in the supercurrent part of equation (A4), the factor depending 
on G(Q, can also be expanded in a Bessel series. In general, we can write 

If mu = -nvo, then there will be a contribution in,-= to the average current 
from the term 

('48) 
V 

im,-,, = Im  [exo(ifio)imJm (2) G-,I 
which explicitly depends upon both y,, (through G-,,) and Po. 

If v,, and i j  are irrationally related to each other, the expression for i(q within 
this approximation has a nice property. Let us suppose that is the case. Note 
that in equation (A4) the factor exp[-i(q/i j)  cos(ijq] is a periodic function with 
frequency 3, and the remaining factor on the right-hand side is a periodic function 
with frequency v,,, due to our approximation. Therefore, if we assume that i j  and U,, 
are irrationally related, then the only way to get a zero frequency component is to 
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i 

Minimum Supercurrent 0 ____________________-- - - - - - - -  - 
t I I I 

0 0.5 1.0 1.5 2.0 2.5 
VO 

Elgum 4 Maximum and minimum time-averaged supucurrenl against LX wltage p" 
junction in a two-junaion system under Dc wllage drivwg, with "1 = 0. ?he ~ l m n l  iP 
measured in units ci IC, and the wllage In units d ICE 

multiply the zero frequency part of each of the two factors. 'EIClking the zero frequency 
mode of exp[-i(v,/G) cos(G$] 

and 

with -2G(,S) as given in equation (M), and T = 2?r/vo the period of the integrand. 
Setting d = ciexp(D),  and @ = (v,S+ Po), some simple manipulations lead to 

which explicitly does not depend upon the phase Po, although it does depend on yo 
through d. Actually, there is a dependence of d on pa, but this is only a consequence 
of the fact that changing Po also changes the defined zero of time, and thus the value 
of yo. This can be most easily Seen by absorbing Po into the phase of the AC driviog. 
"hiis can be used for approximate numerical evaluation of (i) (see figure 4). Actually, 
as shown in figure 4, the current depends upon yo even in the case where the AC 
driving vt = 0. 

For irrationally related 0 and vo, it is possible from the above to prove one 
feature of the behaviour of (i) if V ,  = 0. It is easy to show from equation (All) 
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that, when vo > 0, ( i ) -uo  > 0 when vo < 0, ( i ) -uo  < 0. Thus the net supercurrent 
at irrational values of the voltage in this case is always of the same sign as the normal 
current (see figure 4). 
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