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Abstract. We discuss the dynamics of woltage-driven Josephson jumction arrays with
negligible capacitances. The array dynamics shows a sensitive dependence on initial
phases, leading to current-spike structures in the time-averaged J-V relations. We
demonstrate this effect explicitly for the simple system of a two-junction chain, which we
also use to illustrate the main features of current response to external driving voltages.
We then show that a class of simplified snsatz solutions of two-dimensional voltage-
driven Josephson junction arrays under a perpendicular magnetic field can be reduced
1o two-junction dynamics. In both cases, we find that coherent phase-slip processes can
lead to subharmonic lockings with an external RP field.

1. Introduction

The dynamics of single Josephson junctions driven by AcC currents has provided one
of the great laboratories for non-linear dynamics in solid state systems [1-3]. Such
dynamical phenomena as period doubling, the quasi-periodic transition to chaos, and
hysteresis have been extensively studied with this system. But Josephson junctions
can aiso be used to create spatially extended dynamical systems. Two-dimensional
Josephson junction arrays containing up to ~ 10° individual junctions have been
used for many years to study statistical mechanics problems [4-6]. More recently,
experimentalists have turned to the remarkable dynamical properties of these arrays
[7-9). —

The principal result of these studies has been the observation of giant Shapiro
steps and fractional giant Shapiro steps in -V relations of Josephson junction arrays
[8]. These giant Shapiro steps and fractional giant Shapiro steps represent a coherent
phase-locking of all junctions in an NV x N array at time-averaged voltages satisfying
the relation,

Nhw
Vn.—n(zeq) nez (L.1)

with an external magnetic field inducing f (= p/q; p, g relatively prime) supercon-

ducting flux quanta per unit plaquette and with w equal to the RF frequency of the

driving current. The cases with n/q € Z represent integer giant Shapiro steps and
those with n/q ¢ Z represent fractional giant Shapiro steps.

When capacitances are neglected, the current through junction 75 in the array is

2e 7

Iij = Ic,:'j sin (92 - BJ - };.—C- : A'di‘) o

h - . 2e {7,
3ok, ("i"’:“ﬁ_c i A-dr) (1.2)
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where 8;, 6, are the superconducting phases of islands ¢ and j respectively and A
is the vector potential. R;; denotes the normal state resistance of the junction, and
I_;; its aitical current. Equation (1.2) combined with Kirchhoff’s laws completely
determines the dynamics of the array.

Numerical simulations based on this coupled RsJ model have reproduced the
previously mentioned step structures [10]. However, analytic approaches to the phase
dynamics of the arrays, especially in the experimentally relevant current-driven regime,
have been scarce. Voltage-driven arrays under magnetic fields were analysed by Halsey
using a special ansazz for the ground state configuration, that of ‘staircase states’ (see
section 3) {11, 12}. By using an adiabaticity assumption, not only fractional giant
Shapiro steps but also additional subharmonic giant Shapiro steps were predicted
with estimates of stepwidths in some limiting situations. These subharmonic giant
Shapiro steps would occur at voltages satisfying

_ n Nhw
T m 2eq

n,m n,me Z, (1.3)

These predictions have not fared particularly well by comparison with experimen-
tal results. In particular, subharmonic steps have been elusive experimentally, and it
is possible that their appearance is related to self-field effects not included in the RSy
model of equation (1.2) [13]. The theory makes specific predictions only for currents
oriented along a diagonal axis of a square lattice; experimental studies in this geom-
etry have not only seen no subharmonic steps, but no fractional steps either [14, 15).
It is thus profitable to re-examine in detail the specific assumptions of Halsey’s work,
in order to explore possible sources of the disagreement with experiment.

Halsey’s approach is based on two physical assumptions. The first is that a voltage-
driven array (far more convenient theoretically) can be substituted for the current-
driven experimental situation. The second assumption is that, since the coupled
RST equations generate a dissipative dynamical system, in the limit where the array
dynamics is arbitrarily fast compared with changes in boundary conditions, the state
can be modelled as an adiabatically changing metastable state. As discussed in [11],
this implies the existence of rapid phase-slip processes when the adjabatically changing
metastable state enters an unstable region of phase space.

In this study we shall explore the validity of these assumptions by studying some
examples of voltage-driven systems in which the dynamics can be partially or com-
pletely solved. Our principal result is that the dynamics of voltage-driven arrays is
considerably more subtle than the dynamics of current-driven arrays, even in the
limiting case of a two-junction-in-series array. The dynamics of voltage-driven arrays
is far more dependent on initial conditions, which can alter the current even well
away from any rational voltage step. Nevertheless, dependence of the current on
the phase of the external driving voltage appears only for subharmonic or harmonic
voltages satisfying equation (1.3). In numerical simulations of the voltage-driven case,
current-spike structures appear that do seem to have at least a qualitative relationship
to the current-driven Shapiro steps.

This can be understood by reviewing the case of the single junction. A single
current-driven junction obeying equation (1.2) under a sinusoidal RF field has a well
defined voltage at every value of the current. The Shapiro steps appear only for
harmonic voltages,

fiw

v, = (1.4)
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If the junction is voitage-driven, for voltages not satisfying equation (1.4), there is no
net current flow in the supercurrent channel, ie. (sin ;) = 0, where the averaging is
over time. However, as originally realized by Josephson [16), the situation is different
for voltages satisfying equation (1.4). In these cases, (sin 8;;) # 0 necessarily, rather
the current in the supercurrent channel is determined by the phase shift between the
RF driving ficld and the Josephson oscillations of the junction.

This suggests that if we wish to generalize voltage-driven results to the current-
driven situation, one possibie procedure is to lock for values of the voltage where
variable currents are possible, depending upon the phase relationships of the system.
For systems of more than one junction, however, this is an ambiguous procedure.
Not only is there an intrinsic phase of the external driving voltage, there are also
.intrinsic phases of the initial state of the junction network or array. As we shall see
later, these intrinsic phases can alter the average current, even at voltages completely
unrelated to the RF driving frequency.

In this case, it is natural to hypothesize that it is dependence on the phase of the
driving field that will translate into a phase-locking in the current-driven situation. We
shall find later that this implies both harmonic and subharmonic lfockings in even a
two-junction network, provided that phase-slip processes can relax sufficiently quickly.

The relaxation time of the phase-slip processes scales as (2/V;)1/? (V; is the
average DC voltage per junction) which becomes much less than the Josephson oscil-
lation time (= 1/V;) in the limit where V; is small. Even outside this adiabatic limit,
there is still a dependence of the current on the RF driving phase; however, the size
of the predicted step structures decreases as one leaves the adiabatic repime. This
suggests that the non-appearance of subharmonic lockings in experiment is due either
to a quantitative problem, ie. the distance of the experimental situation from the adi-
abatic limit, or to some, as yet poorly understood, suppression of the subharmonic
lockings due to the current driving.

This paper contains four sections and an appendix. In section 2 we analyse the
voltage-driven two-junction system with equal resistances and critical currents. This
system admits a closed-form solution involving integrals of transcendental functions,
allowing analysis of some of its dynamical features. In section 3 staircase-ansatr
dynamics is used to investigate phase-slip processes in a two-dimensional array in a
magnetic field. In section 4 we discuss the relation of these results both to Halsey’s
original conclusions and to the experimentally relevant current-driven situation. In the
appendix we discuss useful approximations to expressions for the current appearing
earlier in the paper. '

Figure 1. A system of two Josephson junctions in series. The phases ¢p and ¢2 in the
boundary regions are imagined to be fixed. The phase on the centre island is ¢,.
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2. Voltage-driven two-junction system

The simplest non-trivial voltage-driven Josephson junction system consists of two
junctions coupled in series, with the boundary phases ¢, and ¢, given functions of
time (see figure 1). Using current conservation through the island in the middle, and
assuming homogeneity of I, and R, we get

L. . ) Eo. . )
E?ﬁ(d" =@} + I sin(¢; = ) = m‘(ﬁbz — @) + I sin(d,y — ¢, ). 2.1)

We choose ¢, = 0; the voltage is given in terms of ¢,(t) by kg, /2e = V(1). We
are here making the unrealistic assumption that the source impedance R,,, = 0.

We use reduced units of time and current respectively: ¢ = 2el Rt/R, () =
I($)/ I, and v(¥) = V(I)/I R. Later, we will introduce the scaled RF frequency &,
which will be related to the physical frequency w by & = fiw /2el R. Equation (2.1)
now simplifies to

‘;51 + Sin(d’l) = v(i) - (E'J, + Sin(¢2 - ¢1) (22)

where the dot now refers to a derivative with respect to the scaled time Z. Now define
y = (¢y— 2¢,)/2. The case y = 0 corresponds to equal phase differences across
each of the two junctions. After some rearrangements, we obtain

4= —cos (%) sin{y). , (2.3}

This can be integrated to give

j: 3‘% - —fs., ° (22) di. @4

Thus by choosing 7, = 0 and the branch —# £ y < 7, we have

¥(?) = 2arctan {"-’0 exp [-—/ﬂ cos (?;) "] } (2.5)

with

2 =/o v(1)di + G,

¢y = tan (%) 26)
Yy = y(f=0).

From this result and the relation y = (¢, — 2¢,)/2, we can obtain an expression for
Py
The current as a function of time is

i(0) = sin(,) + $y = sin (%2 y(f)) — (®. X
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By using trigonometric identities and the previous expression for y(f) in equa-
tion (2.5) we arrive at the following expression.

e @ P2\ 1-— ciexp[~2G(T))]
=3+ (’““ 22) T T G expl2G0)] 5)

where
G = fo ’ cos(d/2) d (2.85)

and ¢, is defined above. _ '
To begin with, let us first consider some general features of y(%) and i(%). From
equations (2.5) and (2.6), which can be put in the form,

tan (g) = tan (%9-) exp[—G(?)] 29
we see that if y, = 0, then y(f) = 0 for all . Furthermore, since exp[-G(?)] > 0,
tan(y/2) (and bence y, too) does not change its sign. In other words, if its initial
value is > 0 (< 0) then it remains > 0 (< 0) for all later times. This holds for all
possible forms of v(¥).

Until now, our arguments did not depend on the time dependence of the driving
voltage. Now we restrict our attention to the case of DC plus AC voltage driving with
frequency @,

- o(f) = 2{vy + v, sin(@T)]. (2.10)

Then G(%) becomes
¥ T
G(1) =/0 cos (%) dt_=-/0. cos [ﬁo + vyt — %cos(a‘bt_)] di

= Re[exp(if,) Y. i™J, (.-%)/ expli(v, — m@)idf].  (211)

™m==—00 0

Note that 3, fixes the phase relation between the RF driving and the Josephson
oscillations, If v, # ma then

- Jm("‘”l/c’:’)

G = }: {sin [(vo - mo)+ 8, + %1_1-_] —sin [ﬁo + ﬂ;—]}

memee (Yo~ m®)
2.12)
This is a superposition of ascillating functions with frequencies,
U = Uy — M@ me 2. : (2.13)

G(t) will be bounded between G, and G, as it is a sum of oscillating terms.
Therefore tan(y/2) and y also oscillate between two finite values. On the other
hand, if v, = m& for some integer m, then in equation (2.11) for G(f), one
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term (the mth term) is replaced by a linear term in f with a positive or a negative
coefficient depending on m, 3,, @, v, and v,. As { gets farger, this linear term
will dominate G(%). Therefore, if G(?) is linearly increasing, then y goes to = as
T — o0, and if G(T) is linearly decreasing, then y goes to zero as £ — co.

Let us consider the behaviour of #(f), especially the frequency spectrum of i(¥)
and time-averaged currents. We begin with the case when y, = 0 = ¢,, i.e. when

Pr— P = — Po- (2.14)

This corresponds to the case where the initial phase differences of the two junctions
are equal to each other and later developments of the phase differences of each
junction are also equal to each other, giving the same dynamics as that of a single
junction voltage-driven system. This dynamics is closer to the current-driven dynamics
than is the case for other values of y,. For this case, from equation (2.8),

i(f) = %?- + sin (%) &, = 2[v, + v, sin(@D)]. (2.15)
This is a superposition of AC currents with frequencies
UV, = vy — mo (2.16)

where m is an integer, with an additional DC current in the normal current channel.
Only when v, = m@ does the time-averaged current have a finite range of different
values depending on 3,. (This situation is the same as for a single junction under
voltage driving.)

When ¢ % 0, i(f) has a much more complicated behaviour due to the term
exp[—2G(1)). Using the results for G() in previous pages, we can put

~2GD =D+ Y. Fysin [(v—me)i+ 6+ 1"-;3] @.17)

m==—00
where
— = Jm(_vlla’) : mw
D= 2m;m ——-—vo ey sin (,Bo + —2--)

(2.18)
F. = wzjm(_vllw) .

m = -

If we examine equation (2.8) for the current (), we sce that the supercurrent
channel involves two factors.

(i) The term sin(¢,(Z)). This term will contain frequency modes v, = vy—m, @,
where m, € Z.

(i) The term involving G(%). From equations (2.17) and (2.18), we see that this
term will contain frequency modes v, = I,(v, — m,@), where I,, m, € Z.

Hence the frequency modes for i(%) are given by all possible combinations of the
Josephson frequency and the driving frequency,

Up,ny = NV — Na® n,Na €Z (2.19)
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in contrast to the single junction case, in which the Josephson frequency is combined
only with harmonics of the driving frequency.

In general, the time-averaged DC current due to the supercurrent channel is non-
vanishing; for both subharmonic and harmonic values of the driving voltage, its value
depends upon the initial phase 8;. This can be seen by examining a typical term in
the expansion of equation (2.84) in a product of Bessel series. We shall see this for
an explicit example in the appendix. Note, however, that D and F,, become smail in
the limit of large v, which is the opposite of the adiabatic case discussed in [11). In
this limit, G{(f) — 0, and equation (2.84) reduces to the single-junction form, aibeit
with changed parameters. Thus in this case there will be no subharmonic lockings.

If v, and & are irrationally related then we can see from the previous argument
- that the frequency modes are a dense subset of the real numbers. The time-averaged
current (in this case due to the superconducting channel) is also in general non-
vanishing, though a quantitative estimate of this current is rather difficult. It is,
however, easy to see that although it depends upon the initial value of y, it does not
depend upon the phase 3, of the AC driving. Again, an explicit example of this is
discussed in the appendix.

Finally, from equations (2.9) and (2.11) we can estimate the time for y to change
significantly from its initial value y, in a phase-slip process. Suppose ¢,(f) = = at
1 = 0, and that it is increasing at this time. Then if v; < vy, we have approximately

1 . - v _ - v _ -
cos (:ézip_) = —sin (vut -2 cos(wf)) x —vf + =% cos(&f) m —vp (220

s0 that
L G) m —y B2 f2 (221)

for small times. Thus the time 7, at which y(Z) will have changed from y, to y, is
determined by

S \/;3:\/103; [ta,n (yzl)/ta.n (%)} (2.22)

so that the phase-slip time 7g &~ /2/v,. This may be compared with an intrinsic
relaxation time 7y, which is equal to one in reduced units; (v, = Af2el_ R in physical
units). When 7y < 2 /v, the time scale for ¢, to change, then we are in the adiabatic
limit.

In the appendix, we use an approximation to estimate the time-averaged cur-
rents. Numerically, we can evaluate the range of time-averaged currents for various
external driving voltages. This can be done by directly integrating the equations of
motion, using a fixed time-varying external voltage V/(t). We used a first-order time
integration of the equation of motion (2.3) (which gives more information about the
current than higher-order methods). For a given external voltage, maximum and
minimum currents were obtained by varying the initial phase configuration (3, vg).
We generally took about 200-400 such initial points, and then took the maximum and
minimum currents over this set of initial configurations. Figure 2 shows maximum
and minimum currents in terms of the DC component of external voltage. We find a
non-vanishing range of time-averaged current not only for integer harmonic voltages
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Vi;m per junction, V... = nhw/2e, but also for subharmonic voltages, as well as for
voltages with no obvious relation to the driving frequency. We see that, at low-order
fractional voltages such as V; = i(hw/2e) or L(hw/2e), there are indications of
strong variation of the range of currents with woltage, It is not clear whether the
current range against time-averaged voltage varies smoothly or not with voltage; it
may be discontinuous at rational values of DC voltage.

20m T T |

=
=

=
=
=
&

H

L d

£]

!

-1.0 | | i I
0 0.5 10 L5 20 25

Vo /@

Figure 2. The maximum and minimum time-averaged currents plotted against D voltage
in a two-junction system under voltage-driving conditions. The broken line shows the
current in the normal channel; the full lines show the range of possible average currents.
Structure is visible at both harmonic and subharmonic voltages. These results were
obtained using a first-order integration scheme, with a time step of 0.005 x g, and an
integration time of 1000-2000 x Tg. The value of v; was taken to be »; = 0.4, and
@ was taken to be @ = 0.5.

3. Dynamics of two-dimensional diagonal arrays

The ground-state configurations of two-dimensional square Josephson junction arrays
in a magnetic field are not, in general, known except for a few relatively simple values
of flux per plaquette f = p/q. For some of these values of f, the ground states are
so-called staircase states, which are much simpler to deal with analytically due to a
symmetry of the vortex and current configurations. We begin with a brief review of
these states.

In order to find the ground-state configuration of a Josephson junction array in
an external magnetic ficld with f = p/q, we have t0 minimize the Hamiltonian

ﬁjci'
H —_ —% 2&" COS(G,- - 91 - AI'J) (3.1)
L4

in terms of the phases {6;}. Here, the sum is over nearest neighbours. Ay; is the
line integral of the vector potential, as in equation (1.2),

2e f7 '
Aij' —1 EE'/‘-. A‘ d'l". (3-2)
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% — direction ] o - direction

Figure 3. A squam. array showing the diagonal staircases along which the current is
constant (zig-zag lines), as well as the a- and y-directions. The sample is imagined to
be 2N x 2N, so that the number of junctions in a staircase is 2N,

This satisfies ) A,; = 27 f with the sum in the counter-clockwise direction around
a plaquette.

We deal with uniform arrays only with I ;; = I.. The extremum condition for H
_ is equivalent to the requirement that supercurrent be conserved at every site in the
array. The supercurrent across the {ij) bond is [ sin{6,-8; — A,;). A simple way to
satisfy current conservation in a square array is to require that the supercurrent along
any individual diagonal ‘staircase’ of the array be constant (see figure 3). In this case
all of the junctions along a staircase have the same gauge-invariant phase differences.
Let us denote these phase differences for the mth staircase as ¢, =6, -0, — A
Then we can find Jocally stable states with

¢m=7rfm+a0—1r[fm+a°/7r]n (3.3}

where [z}, = int[z + 1] is the nearest integer function. Here, a, is determined by
minimizing the global energy or, equivalently, by letting the net current be equal to
zero. In this way, we get ay = 0 for odd g, and o, = w/2q for even gq. See [12] for
details. For general values of o, we obtain staircase states with non-zero net current
along the direction of the staircases. We will call this the «-direction, the direction
of current obtained by varying «.

Let us assume that an AC plus DC voltage v(?) = 2N (v, + v, sin(®1)) is applied
along the a-direction of a diamond-shaped 2N by 2/ array where 2N refers to the
number of junctions along longitudinal and transverse directions; we suppose that ¥
is an integral multiple of ¢. Here, again as in the two-junction system in section 2,
we use reduced units for notational convenience. Note, in particular, that frequency
is measured in units of the intrinsic response frequency wy = 1/7y = 2el R/h and
time in units of ;. We can construct a simple solution for the dynamics of the array
driven by this voltage by adding a time-dependent function to equation (3.3). That is

Sm(D) = 7 fm + g — n[fm + ap/ 7], + af) 3.4
with &(1) = v, + v, sin(@{). This can be integrated as

i

o(l) = ag+ vyt — % cos(&t) (3.5)
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where a, is an integration constant.

In this solution, the phase dynamics is such that superconducting currents and
normal currents are separately conserved at each node. This is an analogue of the
uniform phase dynamics (y, = 0) of the two-junction system in section 2, extended
to two-dimensional arrays. The phase-slip ansatz of Halsey is based on the instability
of this solution. When «(f) reaches a value such that, for some m, ¢,,, = £# /2, the
global energy of the system will be reduced by a phase-slip of = uniformly across the
mith staircase, with a corresponding vortex motion across that staircase. Halsey [11]
assumed that such a phase-slip took place instantaneously, and proceeded to calculate
properties of the Shapiro steps given such an assumption.

However, within the framework of the staircase ansazz alone, equation (3.4) is the
only solution for a{1); therefore, using only the staircase ansatz, phase-slip processes
cannot be analysed in any detail. This is because, in order to see the instability,
we must compare the energy of a staircase state with that of a neighbouring state
generated through small distortions of phase configurations. These distortions lie
outside of those states described by «(?) alone.

We can generalize this ansaiz to states with non-zero net current along the direc-
tion perpendicular to the a-direction by twisting the phases on successive diagonal
planes by constant angles x,,, m = 1,..., ¢ such that the differences of phase shifts
for neighbouring diagonal staircases are

Tm B Xm — Xm-1- (3.6)

The direction of current induced by this twist we call the x-direction; it is perpen-
dicular to the a-direction. These states no longer have uniform current (or uniform
gauge-invariant phase difference) along a staircase but rather, horizontal bonds and
vertical bonds along a staircase have different, but still constant currents. We will
call these generalized staircase states since vorticity along a staircase is constant. By
giving a time dependence to both v, (f) and ¢,,(%), we can represent a dynamic
state that preserves the generalized staircase form. Using current conservation in the
x-direction, we obtain in reduced units

~$I0{ @, + V) +5I0(Sp =V )~ (@ F ¥ )+ (B =) = —5I0(Dpy ) +Tmps)
+ sin(¢m+1 - ‘7m+1) - (¢‘5m+1 + "Ym+1) + (Q.Sm-i-l - ;Ym+1) 3.7

which can be simplified to

cos(b,, ) sin 7, + v =1, (1) m=1,...,q (3.8

where ¢,,, = ¢,, (%) is as given by equation (3.4), and ¢, denotes the average current
along the x-direction. The current per staircase in the “a-direction can be calculated
using the following formula.

i.(1) = Z sin ¢, cos ¥, + é,, (3.9

m...l

Naw we can analyse the dynamics of phase-slips. Since we have voltage driving
along the a-direction, we can put i, (7) = 0. Thus

cos(d,,)sinv,, + v, =0 m=1,...,q. (3.10)
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The solution {-,, = 0} is stable until one of the cos(,,) becomes negative. Suppose
the nth staircase is the first to reach that instability at time = {,. However smali
~.(%;) may be, due to the instability of equation (3.10) for «,, =, will grow until
Y = 7, at which point it will regain stability. This is equivalent to ¢, changing by
#. First we estimate the relaxation time or phase-jumping time using equation (3.10).
We set 7, = 0 as the time at which cos(¢, ) becomes negative; without loss of
generality we take ¢, = v /2 at 7, = 0. We can integrate equation (3.10) to obtain

t
tan 72—" = tan T"T(D)exp [—fo cos( ¢, ) d't:l (3.11)

with the initial condition ¢, {f = 0} = = /2. This recalls equation (2.9) for the two-
junction system. Following the derivation of equation (2.21), and using equation (3.5)
for the driving voltage, we get '

cos(¢, (D) & v, 3.12)

where we assumed the limit of small argument in the sine function and v, < v,,.
Now if we put 7 as the time for a phase-slip to occur, then from

fFS cos(¢,) df ~ —v,7¢ /2 (3.13)
0

and equation (3.11), we get

| Tg & \/%\/log [ta.n 1@/ tan 7“7(0)-] (3.14)

with =y, (7) — = and +,(0} — 0. In this formula, the logarithmic factor can be
considered to be a number of order unity when realistic cutoff values are used for
limiting phases ~,(7g), and ~,(0). Hence we see that 75 is mainly determined by
its inverse square root dependence on wv,, as in the two-junction system; in fact,
equation (3.14) is identical to equation (2.22) for the phase slip in the two-junction
system.

Let us suppose that an external DC plus AC voltage is applied at the frequency
@. Then the typical DC voltage v, at which we might observe Shapiro step structures
will be v, ~ & (or voltage per junction V; ~ fiws/2e in physical units.) Thus the
typical time scales due to both the external AC voltage and the Josephson oscillations
are ~ 1/, while the relaxation time 75 ~ /1/&@. Therefore, we see that the
relaxation time can be made much smaller than other time scales if we deal with a
small enough driving frequency (compared to wp) and hence with small time-averaged
voltages. This is the adiabatic limit.

Of course, this computation is not necessarily realistic as a description of the full
dynamics of the array. If we enforce spatial periodicity of «,,, through v, .. = v,
then phase-slips occur in the same direction in ali parts of the array, which will induce
a Hall voltage in the direction transverse to the applied voltage, with its magnitude
proportional to the transverse dimension of the array. Many boundary conditions will
exclude this possibility.
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4. Discussion

The relevance of these results to the more physical case of current-driven arrays
is highly debatable. For the two-junction system, the phase-slips that lead to the
subharmonic lockings are simply impossible if the system is current-driven. Similarly,
for the arrays, the phase-slips would lead to macroscopic Hall voltages across the
entire sample. Only if the system can somehow adjust the dynamics (breaking the
staircase symmetry!) so as to evade these voltages will the phase-slips occur.

In comparing these results with the general absence of subharmonic lockings in
experimental studies of arrays, we are thus driven to one of two conclusions. The first
possibility is that the current-driven arrays are able to phase slip as one approaches
the adiabatic limit; one would then conclude that present experiments are too far
from the adiabatic limit to see the subharmonic lockings. The second, and more
interesting possibility, is that the phase-slips are suppressed by the current-driven
dynamics in an array, just as they are in a two-junction system. This implies that the
dissipative current-driving mechanism successfully maintains the array in a state of
higher internal energy than the array would otherwise seek. If true, this would be a
remarkable effect.
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Appendix. Josephson mode approximation

In this appendix we will derive an approximate formula for the time-averaged cur-
rents for a given external voltage and initial phase configuration of a two-junction
system. The amplitude of the zero frequency component of i(7) from equation (2.8a)
corresponds to the time-averaged current for a given voltage and initial phase con-
figuration. But it is very difficult to estimate the time-averaged current from the full
expression, because it involves a sum of infinite products. This is due to the fact
that in section 2 we retained all of the sinusoidal terms in G(%). If we can approxi-
mate G(%) by only one AC component, then currents may be estimated in a relatively
straightforward manner. From the expression for G({) for a given AC plus DC woltage
driving, (we use the notation of section 2),

26D =D+ Y. F,sin [(vo ~m@)+ By + ’-"‘2—“ (Al)

m==—0o0

where

D=2 3 Ty (et )
i (A2)

_—_ J'm( vl/w)
o & 2 =)
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we see that the mn = 0 term is dominant when |v,/&| < 1 or in the adiabatic limit
where v, < 1. This assumed, we can approximate —2G(%) as
- 2G(T) = D+ Fysin(v,t + 5;) (A3)

with D and F, as given above. In a sense this can be called a simple Josephson
mode approximation or small AC component approximation because of the condition
v,@ < 1. If we substitute the expression for —2G(%) into equation (2.8a) for
i(f), then we can obtain the time-averaged current by taking the zero frequency
component.

If v, and & are rationally related to one another, ie. if m& = ny, for some
.integral m, n, then we can show that the current depends both upon y, (through
cy) and upon the phase-shift with the driving field, ﬁo Recall the expression for the
average current,

() = @af2) + (sin (§2) 7 22RCEA. (a9

Here { ) denotes a time average. In the second term, sin(¢,/2) can be expressed as

. ¢2) I Y -
sin (.__, = sin |8y + vl — = cos(@i)
2 [ @ ] (A5)

=Im [exp(i,@n)exp(ivuﬂ exp (-—i% cos(f:;f))]
which can be written as
sin (¢2) =Im [GXP(iﬁu) exp(ivyf) f: i™J,, (- %) exp(ima:f)l . (A6)

The second term in the supercurrent part of equation (A4), the factor depending
on G(1), can also be expanded in a Bessel series. In general, we can write

1—c2exp(—2G) _
1+ ciexp(—2G) ~

Y. G, explin(vd + Bo)l- (A7)

n=-0oo

If m& = —nwv,, then there will be a contribution 7,, _,, to the average current
from the term

i mn = I [exp(i80)i™ T, (2) G, ] (A8)
which explicitly depends upon both y, (through G'_,) and 5,.

If v, and & are irrationally related to each other, the expression for i(f) within
this approximation has a nice property. Let us suppose that is the case. Note
that in equation (A4) the factor exp[—i(v, /@) cos(@1)] is a periodic function with
frequency @, and the remaining factor on the right-hand side is a periodic function
with frequency v,, due to our approximation. Therefore, if we assume that & and v,
are irrationally related, then the only way to get a zero frequency component is to
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Figure 4. Maximum and minimum time-averaged supercumrent against DC voltage per
jusction in a two-junction system under pC voltage driving, with »; = 0. The current iz
measured in units of I, and the voltage in units of I R.
multiply the zero frequency part of each of the two factors. Taking the zero frequency
mode of exp[—i(v, /&) cos(&1)]

(exp [—if—;— cos(G:f)D = J, (:;—1> (A9)
and .

(S‘“(‘(”°+ﬁ°)j1+?zgi ig%>

= 1 [ atsinticen + 00D T S22 (A10)

with —2G(%) as given in equation (A3), and 7 = 2% /v, the period of the integrand.
Setting d = cZexp( D), and ¢ = (vt + B,), some simple manipulations lead to

1 f* . 1—clexp(-2G(¢))
_1_._./ dt sm¢1+ c exp(—2G())

o dFo j de log(1 + d? + 2d cosh( Fy sin ¢)) (Al1)

which explicitly does not depend upon the phase G, although it does depend on y,
through d. Actually, there is a dependence of d on 3, but this is only a consequence
of the fact that changing [, also changes the defined zero of time, and thus the value
of y,. This can be most easily seen by absorbing G, into the phase of the AC driving.
This can be used for approximate numerical evaluation of (i) (see figure 4). Actually,
as shown in figure 4, the current depends upon y, even in the case where the AC
driving v; = 0.

For irrationally related & and vy, it is possible from the above to prove one
feature of the behaviour of (i) if v, = 0. It is easy to show from equation (All)
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that, when v, > 0, {i)—v, > 0 when v, < 0, {i)—v, < 0. Thus the net supercurrent
at irrational values of the voltage in this case is always of the same sign as the normal
current (see figure 4).
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